Un prisma stellare

Giovanna, come compito per casa, deve trovare il volume di un prisma che ha questa forma:

L'immagine rappresenta un prisma retto con una stella a cinque punte come base.

Sa che la base è una stella regolare a cinque punte i cui lati misurano tutti 2 cm e sa che il prisma è alto 5 cm. Però non ha la più pallida idea di come calcolare l’area della stella.

Leggi tutto “Un prisma stellare”

Allegati

  • Un prisma stellare • 370 kB • 556 click
    Testo del problema "Un prisma stellare" scaricabile e stampabile

Costruire un pallone da calcio


Per condividere con gli alunni il video che presenta questo problema, fornire il seguente link:
https://youtu.be/lNfwicOaAHs

Domande e risposte

A partire dal reticolo esagonale allegato a fondo pagina (citato nel video come “il disegno di Simone”) è possibile costruire un solido che ricorda un pallone da calcio.

Quante facce esagonali ha questo solido? E quante pentagonali?

Il solido che si ottiene nel video e che assomiglia a un pallone da calcio ha 20 facce esagonali e 12 “buchi” pentagonali, in corrispondenza di ciascuno dei quali possiamo immaginare una faccia.

Quanti esagoni ci sono nel reticolo del disegno di Simone?

Nel reticolo che appare sul disegno mostrato nel video si possono contare 39 esagoni, 8 dei quali vengono poi “eliminati” dai tagli lungo le linee continue.

Istruzioni

La richiesta di scrivere delle istruzioni precise, che consentano a chi non ha visto il video di ricostruire il solido, può essere soddisfatta in molti modi.

Dalle istruzioni deve emergere il fatto che alcuni esagoni vanno incollati su altri esagoni, lasciando dei “buchi” a forma di pentagono. Come suggerito nel video, indicare sullo stesso disegno quali esagoni vadano incollati su quali altri potrebbe facilitare di molto le cose.

In questo reticolo sono evidenziati con due colori diversi gli esagoni che vanno incollati su altri esagoni.
FIGURA 1 – In questo reticolo gli esagoni che rimangono dopo aver tagliato lungo le linee continue sono colorati in due modi diversi. Ogni esagono chiaro dovrà essere incollato a un esagono scuro. In particolare ogni esagono chiaro adiacente a uno scuro tramite una linea continua dovrà essere incollato proprio a quell’esagono scuro. Se si vuole che alla fine il solido abbia tutte le facce esagonali dello stesso colore (scure), si dovranno fare le pieghe “a monte” e si dovranno incollare gli esagoni chiari SOTTO gli esagoni scuri.
In questo reticolo gli esagoni da incollare uno sull'altro sono indicati con lo stesso numero.
FIGURA 2 – In questo reticolo ciascuno degli esagoni che rimangono dopo aver tagliato lungo le linee continue è etichettato con un numero o con un numero “bis”. L’esagono con l’etichetta n-bis deve essere incollato all’esagono con l’etichetta n. Si può osservare che quasi tutte le coppie di esagoni n e n-bis sono adiacenti lungo una linea continua; fanno eccezione le tre coppie 1 e 1bis, 19 e 19bis, 20 e 20bis.

Commenti

Un problema significativo

Immaginare a occhi chiusi, costruire a occhi aperti

Spesso, nella scuola, si parla della necessità di sviluppare le capacità di visualizzazione spaziale degli alunni. Particolarmente rilevante è, a questo proposito, la capacità di pensare il solido che si può costruire a partire da un certo sviluppo piano. Questa abilità può essere allenata attraverso varie esperienze concrete, purché sempre accompagnate da opportune riflessioni: costruire solidi a partire dal loro sviluppo piano; disegnare lo sviluppo piano di un solido dato; individuare sviluppi piani diversi dello stesso solido; indicare – su un dato sviluppo – quali lati dei poligoni che lo compongono andranno a combaciare con quali altri lati per costruire un certo solido…

In questo problema, le abilità di visualizzazione spaziale degli alunni entrano ancor più in gioco, insieme alla immaginazione, in quanto il reticolo esagonale disegnato sul foglio di carta NON coincide con lo sviluppo piano del solido: ci sono tanti esagoni di troppo e… mancano i pentagoni!

Dove si nascondono alcuni esagoni? Da dove vengono i pentagoni? Nello scrivere le istruzioni richieste, gli alunni dovranno, in un certo senso, rispondere a queste domande.
La situazione che si presenta più frequentemente è questa: 6 esagoni disposti ad anello attorno a un settimo esagono completamente delimitato da linee continue (e che quindi diventerà un buco nel reticolo); i 6 esagoni diventano 5 perché uno di essi viene incollato su un altro e l’esagono centrale diventa un buco pentagonale.

Ma ci sono anche coppie di esagoni che sul reticolo sono “lontani” e che devono essere incollati uno sull’altro: lo si capisce anche prima di aver costruito il solido, perché altrimenti non si potrebbe ottenere qualcosa che assomiglia a un pallone. Non è però facile capire di quali esagoni si tratti, se ci si limita a osservare il reticolo o a guardare il video! Dopo aver costruito il solido, però, attraverso un gioco di passaggi continui dalla manipolazione alla riflessione (e viceversa), dal pensare al toccare (e viceversa), dal costruire a occhi aperti all’immaginare a occhi chiusi (e viceversa) i ragazzi potranno concludere che gli esagoni “lontani” da incollare uno sull’altro saranno quelli indicati in FIGURA 2 con le etichette 1 e 1bis, 19 e 19bis, 20 e 20bis.

cogliere le analogie

Una buona dose di immaginazione serve anche per vedere l’analogia tra il pallone da calcio e l’oggetto, pieno di buchi, che si costruisce col cartoncino, nonché tra questo oggetto e il poliedro archimedeo con 20 facce esagonali e 12 facce pentagonali che è rappresentato nella figura qui sotto.

Comparison of truncated icosahedron and soccer ball

Un problema memorabile

Tanti fattori possono rendere questo problema memorabile: lo stupore che si prova nel vedere che da un reticolo fatto di soli esagoni nasce un solido in cui si individuano anche dei pentagoni, il fatto che si parli di un oggetto tanto comune quanto amato come il pallone da calcio, il fatto che i ragazzi si scoprano capaci di costruire da soli qualcosa di veramente bello…

Ciascun insegnante, nel contesto della propria classe, saprà agganciare a questo problema discussioni, riflessioni e scoperte in modo tale che tornino facilmente alla mente degli alunni, ogni volta che rivedranno o ripenseranno a un pallone da calcio!

Un problema aperto

In questo video-problema si chiede agli alunni di contare quanti sono gli esagoni e quanti sono i buchi pentagonali nell’oggetto che si costruisce a partire dal reticolo esagonale, che è come contare gli esagoni e i pentagoni che, una volta cuciti insieme, formano un pallone da calcio; ed è anche come contare le facce del poliedro che il pallone da calcio richiama.

È probabile che, mentre cercano di risolvere questo problema, gli alunni stessi si pongano ulteriori domande ed è utile che l’insegnante le raccolga, soprattutto se intende approfondire alcune questioni.

come si chiama il poliedro corrispondente al pallone da calcio?

È sorprendente la necessità (a volte quasi impellente) che i ragazzini hanno di dare un nome agli oggetti che imparano a riconoscere. E i nomi di questo poliedro possono far nascere altre domande.

Un nome attribuito a questo poliedro è icosaedro tronco (o troncato): perché?
Una risposta “visuale” (che, a seconda dell’età degli studenti, si potrà tradurre in modo sempre più appropriato nel linguaggio della geometria) si trova nel video qui sotto, tratto dal canale YouTube Mnogogranniki Ru (un canale educativo russo, tutto dedicato ai poliedri). Nel video si mostra come questo poliedro si ottiene a partire da un icosaedro “tagliando via”, intorno a ciascuno dei 12 vertici, una piramide (che sarà a base pentagonale, perché in ogni vertice arrivano 5 facce).

Qualcuno indica questo poliedro come poliedro uniforme (5, 6, 6): perché?
Si tratta di un poliedro uniforme perché intorno a ogni suo vertice arrivano gli stessi poligoni e, inoltre, comunque si fissino due vertici, è possibile rigirare il poliedro in modo da spostare il primo nella posizione del secondo. Queste caratteristiche fanno sì che il poliedro si possa identificare con una serie di numeri che indicano (in ordine) il numero di lati delle facce che arrivano in uno stesso vertice. Il nostro poliedro dunque è un poliedro uniforme di tipo (5,6,6): in ogni vertice arrivano un pentagono regolare e due esagoni regolari.

Un poliedro uniforme (5,6,6)

Quanti sono gli spigoli del poliedro corrispondente al pallone da calcio?

Questa domanda equivale a chiedersi quante sono le cuciture che bisogna fare per costruire il pallone da calcio a partire da pezze esagonali e pentagonali.
Per rispondere, gli alunni possono iniziare a contare spigolo per spigolo, magari aiutandosi con un pennarello per non rischiare di contare lo stesso spigolo due volte. Non è raro, però, che (pensando al pallone da calcio e alle pezze da cucire insieme) in qualche gruppo i ragazzi si accorgano che ogni cucitura unisce due lati, di due pezze diverse. I lati delle pezze esagonali sono 20×6=120; i lati delle pezze pentagonali sono 12×5=60; i lati sono quindi in tutto 180 e le cuciture da fare saranno 180:2=90.

Quanti sono i vertici del poliedro corrispondente al pallone da calcio? C’è qualche legame tra il numero delle facce, degli spigoli e dei vertici?

Contate le facce e contati gli spigoli, si possono contare (uno alla volta, o con qualche strategia che faccia riferimento alla simmetria del poliedro) anche i vertici.
A partire da questo e da altri problemi che abbiano a che fare con il numero di facce, vertici e spigoli di un poliedro, si potranno avvicinare gli alunni alla relazione di Eulero, dando così loro l’occasione di toccare un nodo della matematica profondo e importante, di cui parleremo nella sezione Quasi un libro.

Un problema difficile

La difficoltà di questo problema, inizialmente, potrebbe sembrare di tipo manuale. In realtà i ragazzi si accorgeranno presto che la costruzione di questo solido non è più complicata di quella di tanti altri che si possono fare con cartoncino, forbici e colla: la costruzione di molti solidi, anche se apparentemente più semplici, richiede infatti maggior precisione nei tagli (perché gli angoli delle facce o tra una faccia e l’altra sono più stretti) o nella fase di incollaggio (perché le superfici da incollare sono più sottili o difficili da stringere tra le dita).

La vera difficoltà sta nello scrivere delle istruzioni che servano a qualcuno che non ha potuto vedere il video: occorre osservare bene quanto viene proposto dall’insegnante, provare a ripeterlo (probabilmente più volte) focalizzando l’attenzione sui diversi passaggi che si compiono e trovare un modo per descriverli che sia davvero utile allo scopo. Entrano qui in gioco abilità e competenze linguistiche, perché i ragazzi dovranno fare un uso appropriato ed efficace del linguaggio; ma entrano in gioco anche abilità e competenze che hanno molto a che fare con la matematica e con il pensiero computazionale, per quanto non si vedano numeri, né calcoli, né calcolatori automatici!

Un problema di matematica con effetto sorpresa

Le sorprese suscitate da questo problema possono essere tante, a seconda della classe a cui lo proponiamo.

Chi non ha mai osservato da vicino un classico pallone da calcio e non ha mai notato le cuciture che caratterizzano la sua superficie risulta sorpreso nello scoprire che non si tratta di una sfera perfetta e uniforme, bensì del risultato di tanti singoli poligoni che si inarcano verso l’esterno per effetto della pressione dell’aria interna al pallone stesso.
Molti di quelli che, invece, queste cuciture le hanno già notate si stupiscono del fatto che i singoli pezzi non sono tutti esagoni, anche se con poco sforzo (pensando alla tassellazione del piano in esagoni che si può immaginare guardando i favi di un’arnia o i pavimenti di molte cucine…) si accorgono che, con esagoni soltanto, non si può fare una palla: tre esagoni regolari posti attorno a un unico vertice si uniscono uno all’altro formando una superficie piana.
Quasi tutti si stupiscono, a buon conto, che dal reticolo di soli esagoni si possa costruire il pallone da calcio: non è facile, all’inizio, immaginare che basti lasciare dei buchi pentagonali per ottenere l’effetto desiderato!

Scenari possibili

Questo problema si presta ad essere proposto a livelli molto diversi (meglio se adeguando il tono del racconto e delle richieste all’età dei nostri interlocutori).

Per alunni della scuola primaria, potrebbe essere il coronamento di una serie di attività sui poliedri o sulla geometria solida, mentre per alunni della scuola secondaria potrebbe essere usato come avvio allo studio dei poliedri (per il primo grado) e della relazione di Eulero (per il secondo grado).

Materiale necessario

A fondo pagina è possibile scaricare il file con il reticolo di cui si parla nel video-problema.

È opportuno dare a ogni alunno questo reticolo stampato su cartoncino (quello da 120 g/m2 è dello spessore adatto), in modo da poter costruire il proprio pallone da calcio. È altrettanto opportuno che ogni alunno, o ogni gruppo, riceva qualche copia in più, stampata anche solo su carta, per poterci lavorare al fine di scrivere le istruzioni richieste.


Allegati

Poligoni regolari e frazioni: un po’ più di varietà

Nella figura qui sotto vedete tre poligoni regolari, due ottagoni e un quadrato, che hanno in comune un vertice e che riempiono perfettamente, senza sovrapposizioni e senza buchi, l’angolo giro intorno a quel vertice.

Due ottagoni regolari e un quadrato con un vertice in comune. Problemi con tassellazioni e frazioni

Riccardo, che in questo periodo sta studiando le frazioni, vedendo la figura su un libro, esclama “To’! Nella figura riesco a vedere che 3/8 + 3/8 + 1/4 = 1”.

Leggi tutto “Poligoni regolari e frazioni: un po’ più di varietà”

Allegati

I viaggi di Gulliver

Il brano che segue è tratto da I viaggi di Gulliver di Jonathan Swift:

“Feci allora un gesto per indicare che volevo bere. Dal mio modo di mangiare avevano capito che una piccola quantità non mi sarebbe bastata; ed essendo un popolo ingegnosissimo, con molta abilità issarono una delle loro botti più grandi, la fecero rotolare verso la mia mano e la scoperchiarono in alto; io bevvi tutto in un solo sorso, cosa che potevo ben fare poiché conteneva appena una mezza pinta e aveva il gusto di un leggero vino di Borgogna, ma assai più squisito.”
Leggi tutto “I viaggi di Gulliver”

Allegati

Un taglio a effetto

Per condividere con gli alunni il video che presenta questo problema, fornire il seguente link:
https://youtu.be/HSvPk-GAxEk

Soluzione

Per condividere con gli alunni il video con la soluzione del problema, fornire il seguente link:
https://youtu.be/RwQ3uHWNmS8

Commenti

“Un taglio ad effetto” è un bel problema senza numeri: niente dati, niente operazioni, niente diagrammi di flusso… L’unica cosa che serve per risolverlo è  una buona dose di immaginazione.

Un problema significativo

Per quanto il problema sia ambientato in una cucina e sia presentato attraverso un linguaggio semplice, esso tratta di argomenti di tutto rispetto: il cilindro, le sezioni piane di un solido, la circonferenza, l’ellisse, le linee rette, le linee curve. Addirittura spunterà una sinusoide: naturalmente, il problema non richiede che i ragazzi già la conoscano, né si pone l’obiettivo di farla loro conoscere; possiamo però cominciare a farla osservare, il che faciliterà loro la vita quando più avanti la incontreranno.

Un problema memorabile

Difficilmente ci si può dimenticare di un problema di questo tipo, un po’ per come è presentato (attraverso oggetti concreti molto familiari ai ragazzi e di fronte ai quali di solito non pensano alla matematica), un po’ per il fatto che la soluzione è davvero sorprendente.

Soprattutto diventa impossibile dimenticarsene, come spesso accade, se si è davvero passato un po’ di tempo a cercare di risolverlo, a immaginarsi a cosa potrebbe assomigliare il foglio arrotolato attorno al würstel, tagliato e srotolato.

Non c’è un motivo specifico “in sé” che renda importante sapere (soprattutto per ragazzini della scuola media) come appare il foglio quando lo srotoliamo. In altre parole, il motivo per cui presentiamo il problema non è tanto il risultato, ma tutta una serie di “piccole cose” che possono derivare dal tentativo di immaginare la soluzione e che riguardano il modo di imparare la matematica, attraverso un processo di ricerca.  È di queste cose che parleremo nel prossimo paragrafo.

Metacognizione

Affrontare problemi come questo può aiutare i ragazzi a farsi un’idea della matematica e del come impararla un po’ più corrispondente al vero di quanto non lo siano stereotipi molto diffusi:

  • la matematica è certamente una materia astratta, fatta di idee più che di oggetti concreti; ma si tratta di idee piene di significato, che hanno a che fare con il mondo reale e che ci permettono di conoscerlo e descriverlo;
  • sia la realtà che la matematica sono piene di fatti e di situazioni sorprendenti che meritano di essere osservati, studiati, compresi… molto più di quanto non sembri da certi libri di scuola;
  • se la realtà e la matematica non ci sorprendono, può essere colpa del fatto che non ci poniamo domande significative al loro riguardo; a volte porsi delle buone domande è molto più interessante ed entusiasmante che conoscere le risposte;
  • per imparare la matematica non basta imparare e applicare regole ferree: occorre anche allenare la nostra immaginazione.

Un problema aperto

Perché il taglio va “su e giù”?

Il secondo video, quello in cui viene presentata la risposta al quesito posto dal problema, termina con una domanda: una volta scoperto com’è fatto il taglio, riusciamo a capire perché è fatto proprio così?
Potrebbe essere questa una delle prime direzioni verso le quali puntare con i ragazzi, sia nel caso in cui qualcuno fosse riuscito ad immaginare il giusto “profilo” del taglio, sia nel caso in cui tutti avessero pensato ad un “profilo” sbagliato, o non fossero riusciti ad immaginare alcunché.

Due osservazioni possono essere alla portata anche dei ragazzini della scuola secondaria di primo grado, o degli ultimi anni della scuola primaria.

  • Quando il coltello (e quindi il taglio) è perpendicolare all’asse del würstel, è anche parallelo al bordo del foglio; quindi tutti i punti del taglio sono equidistanti dal bordo del foglio, che è rettilineo, e quindi anch’essi stanno su una retta (parallela al bordo del foglio).
    Quando invece il coltello (e quindi il taglio) non è perpendicolare all’asse del würstel, non è nemmeno parallelo al bordo del foglio; quindi i punti del taglio sono alcuni più vicini ed alcuni più lontani dal bordo del foglio.
    Inoltre siccome il foglio gira attorno al würstel, se immaginiamo un punto muoversi lungo il taglio lo vedremo prima allontanarsi dal bordo e poi avvicinarsi di nuovo.
  • Il foglio non compie un unico giro attorno al würstel: essendo arrotolato attorno al würstel, finito un giro ne fa un altro, e poi un altro, e un altro ancora… Per questo motivo, il punto che si muove lungo il taglio e che abbiamo visto prima allontanarsi e poi avvicinarsi al bordo del foglio ripete questo movimento più e più volte, andando “su e giù” sempre nello stesso modo.

Fatte queste osservazioni, un buon modo per verificare se tutti le hanno interiorizzate può essere quello di chiedere ai ragazzini di disegnare come immaginano il profilo del taglio sul foglio srotolato quando il coltello fosse più o meno inclinato rispetto all’asse del würstel: che cosa rimane uguale a prima? che cosa cambia? come cambia?

Dall’oggetto concreto all’ente matematico

Più sono grandi i ragazzi ai quali ci rivolgiamo, più avrà senso usare i termini specifici del linguaggio della matematica per descrivere i “personaggi” di questo problema:  ecco allora che il würstel diventerà un cilindro, il coltello una sezione piana del cilindro, la “circonferenza allungata” una ellisse, il “profilo” del taglio sul foglio srotolato una sinusoide.

Per i ragazzi della scuola secondaria di secondo grado potrebbe essere un problema interessante quello di determinare la funzione il cui grafico corrisponda al “profilo” del taglio. A chi conosce già un po’ di trigonometria, verranno sicuramente in mente le funzioni seno e coseno, ma… si tratta solo di una somiglianza, o la curva che vogliamo descrivere è proprio una sinusoide? ascissa e ordinata dei punti di questa curva, a cosa dovranno corrispondere sul cilindro? quale funzione lega  l’ascissa e l’ordinata di questi punti? da quali parametri potrebbe dipendere il grafico della funzione trovata?

Cliccando sull’immagine qui sotto, si accederà ad una risorsa condivisa sul portale GeoGebra in cui abbiamo cercato di evidenziare le corrispondenze descritte poco sopra.

e se al posto del würstel mettessimo un altro oggetto?

Una volta compreso perché il foglio tagliato e srotolato mostra un certo “profilo”, avrà senso chiedere (anche a ragazzini più piccoli):

  • e se invece di arrotolare il foglio attorno a un würstel lo arrotolassimo attorno ad un prisma a base rettangolare (ad esempio, una scatola di torrone), quale “profilo” otterremmo con un taglio perpendicolare all’asse del torrone? e con un taglio non perpendicolare all’asse?
  • e se il foglio lo arrotolassimo attorno a una scatola di Toblerone (un prisma a base triangolare) quali “profili” otterremmo nei due casi?

Grazie a domande come queste, l’insegnante potrà capire se gli alunni si sono impadroniti della situazione, se hanno interiorizzato le riflessioni condivise sul perché il profilo del taglio è fatto in un certo modo.
Dal canto loro, i ragazzi potrebbero fare esperienza di una realtà fondamentale: se immaginare la curva nella situazione proposta dal problema sarà stato difficile (o, per qualcuno, impossibile), l’avere analizzato la situazione con occhi da matematici in erba permetterà loro di immaginare adesso situazioni diverse, con maggior consapevolezza e con maggior probabilità di successo.
E, grazie alle stesse domande, gli insegnanti potrebbero capire quanto gli alunni hanno interiorizzato

Un problema di matematica con effetto sorpresa

L’effetto sorpresa di questo problema è quasi garantito e, di fatto, già nei paragrafi precedenti ne abbiamo parlato.

Sotto la supervisione di un adulto sarebbe anche bene che gli alunni potessero sperimentare l’emozione di “fare una sorpresa” a qualcun altro: ai compagni di scuola di altre classi o, a casa, ai fratelli e agli ignari genitori.

L’emozione di “sapere come va a finire” una storia che gli altri non conoscono è una emozione positiva, che infonde sicurezza in chi la prova e che troppo raramente alcuni alunni riescono a provare: questa potrebbe essere l’occasione giusta!

Scenari possibili

I bambini della scuola primaria possono comprendere la richiesta del problema, possono usare la propria immaginazione e poi confrontare il prodotto della propria fantasia con il foglio effettivamente tagliato. Se saranno sinceri, difficilmente ci diranno di aver immaginato correttamente l’effetto del taglio sul foglio di carta, ma non per questo il problema sarà stato per loro poco significativo, anzi! Tutto ciò che si diceva prima a proposito dell’effetto sorpresa sarà sicuramente valido.

I ragazzi della scuola media potranno, probabilmente, descrivere meglio in termini matematici la situazione concreta: il würstel potrà diventare un cilindro, il coltello un piano, il foglio srotolato potrà diventare un altro piano, l’effetto del taglio sul foglio srotolato potrà essere considerato una curva piana. In base alla nostra esperienza, però, ci sentiamo di dire che tutto questo avverrà solo “a posteriori” e che anche per gli alunni della scuola secondaria di primo grado l’effetto sorpresa è garantito.

Studenti di scuola superiore ben abituati a “pensare geometricamente” potrebbero immaginare senza difficoltà la curva generata dalla sezione, ma sono davvero tanti i nostri alunni abituati al “pensiero geometrico”? Se così non fosse, questo problema può essere un primo tassello per aiutarli a riscoprirlo.

Materiale necessario

Non è necessario che gli alunni svolgano in prima persona l’attività descritta in questo problema (ed è comunque sconsigliabile che lo facciano da soli).

Sotto la supervisione di un adulto, però, potrebbe essere interessante che confermassero o falsificassero da soli le proprie ipotesi. In questo caso avranno bisogno di un würstel, un foglio di carta, un tagliere e un coltello.

Problema tratto da…

L’attività che qui abbiamo proposto sotto forma di problema è presentata, con alcune varianti, anche su alcune “fonti autorevoli” che ci piace qui citare.

La prima è Matematica per istantanee di Hugo Steinhaus (Zanichelli, 1994, traduzione italiana di Mathematical Snapshot, la cui prima edizione è del 1938): l’autore proponeva di avvolgere il foglio attorno ad una candela (invece che ad un würstel), ma il problema era sostanzialmente lo stesso.

Un taglio a effetto si ottiene anche se, invece del wurstel, si usa una candela, come proposto da Hugo Steinhaus in Mathematicla Snapshot - Un problema sul cilindro e lo sviluppo sul piano di una sua sezione

La seconda è l’articolo Unwrapping Curves from Cylinders and Cones di Tom M. Apostol e Mamikon A. Mnatsakanian (The Mathematical Association of America, monthly 114, May 2007), in cui viene proposta una variante che sarebbe bello qualche alunno provasse a realizzare, magari riprendendosi in un video. Immergendo parzialmente un rullo in una vaschetta di pittura (in modo che l’asse del rullo non sia né perpendicolare né parallelo al piano della superficie della pittura) e facendo poi scorrere il rullo su una superficie piana, si può ugualmente ottenere il profilo di una sinusoide.

Immergendo un rullo nella pittura si può ottenere una sinusoide, come illustrato da Apostol e Mnatsakanian


C’è scatola e scatola

Alice e Vanessa sono sorelle e, come spesso accade, sono sempre molto attente a che una non riceva (da nonni, genitori o adulti in generale) qualche cosa in più dell’altra, che si tratti di attenzioni, di regali o del permesso di fare qualcosa.
Con grande gioia della mamma stanno mettendo in ordine la loro camera e vorrebbero avere una scatola per ciascuna, in cui mettere i propri braccialetti. Si mettono così a cercarle nell’armadietto dove sono riposte tutte le vecchie scatole vuote (di biscotti, di scarpe, di caffè, di cioccolatini…), ma dopo poco nasce un litigio furibondo, perché non ne trovano due uguali.
Leggi tutto “C’è scatola e scatola”

Allegati

  • C'è scatola e scatola • 322 kB • 1205 click
    Testo del problema "C'è scatola e scatola" scaricabile e stampabile
My Agile Privacy
Questo sito utilizza cookie tecnici e di profilazione. Cliccando su accetta si autorizzano tutti i cookie di profilazione. Cliccando su rifiuta o la X si rifiutano tutti i cookie di profilazione. Cliccando su personalizza è possibile selezionare quali cookie di profilazione attivare.
Attenzione: alcune funzionalità di questa pagina potrebbero essere bloccate a seguito delle tue scelte privacy: